

EUMETSAT Meteorological Satellite Conference 2017

2 October 2017

Need for space-based measurements of CO₂ and CH₄

- Reduce uncertainty in fossil fuel emission inventories and their time evolution
 - Discriminate and quantify anthropogenic emissions in context of natural carbon cycle
 - Provide a consistent global method for validating GHG inventories
 - Address new requirements from UNFCCC Paris agreement (e.g. "global stocktaking")
- Monitor and predict changes in the natural carbon cycle associated with climate change and human activities
 - Deforestation, degradation, fire
 - Changes in CO₂ and CH₄ associated with drought, temperature stress, melting permafrost
 - Changes in ocean thermal structure and dynamics

Measuring CO₂ from Space

Validate measurements to ensure X_{CO2} accuracy of 1 ppm (0.25%)

Estimating Fluxes from Space-based CO₂ Measurements

Estimating surface fluxes of CO₂ or CH₄ from space-based observations of reflected sunlight is a 6-step process:

- 1. Acquire high spectral resolution, co-bore-sighted observations within near infrared CO₂ and O₂ bands at high spatial resolution over the sunlit hemisphere
- 2. Calibrate these measurements to yield spectral radiances
- 3. Use remote sensing retrieval algorithms to estimate the column-averaged CO₂ and CH₄ dry air mole fractions, X_{GHG}, and other state properties from each sounding
- 4. Validate the X_{GHG} estimates against available standards
- 5. Perform a flux inversion to estimate the surface GHG fluxes needed to maintain the observed X_{GHG} distribution in the presences of the prevailing winds
- 6. Validate retrieved fluxes against available standards

Retrieving X_{CO2} from GOSAT and OCO-2 Data

GOSAT TANSO-FTS has been returning 300-100 cloud free soundings/day since Apr 2009. The ACOS/GOSAT team has been using these data to retrieve X_{CO2}.

OCO-2 has been returning 25000 to 70000 soundings/day since Sept 2014. The ACOS/GOSAT algorithm was modified to retrieve $X_{\rm CO2}$ from these data.

A Quick Look at the OCO-2 Prime Mission

Creating a Combined Data Product: the OCO-2/GOSAT Collaboration

Vicarious Calibration

Retrieval Algorithm

Forward Radiative Transfer Model Spectra + Jacobians

Instrument Model

Spectral+Polarization

Inverse Model

- Compare obs. & simulated spectra
- **Update State** Vector

Cross Validation

Lessons Learned from GOSAT and OCO-2: Cross-Calibration and Cross Validation

Pre Launch:

- Exchange information on best practice for pre-launch instrument characterization
- Cross calibration of pre-launch radiometric standards
- Exchange of gas absorption coefficient and solar data
- Retrieval algorithm development/intercomparison
- Validation system development (TCCON, aircraft)
- Multi-Satellite OSSE's what do you gain with truly coordinated observations

Post Launch:

- Cross calibration of solar/lunar/Earth(vicarious: RRV+?) observations
- Including exchange of solar and lunar standards
- Cross validation: TCCON, EM27/Sun, and aircraft validation campaigns
- Continued retrieval algorithm development/intercomparisons

Quantifying Localized Sources

High spatial resolution and full coverage are critical for quantifying localized sources

Nassar et al. (GRL 2017)

Anthropogenic Emissions

"Top-Down" Flux Inversion Estimates

Solar Induced Chlorophyll Fluorescence (SIF)

OCO-2 SIF over Des Moines, Idaho

Sun et al. (Science 2017)

Biospheric Fluxes: Relative Roles of heat, drought and fires in 2015 El Niño

- Question: Are fires, high temperatures or drought responsible for increases in carbon release during El Niños?
- Approach: X_{CO2} and SIF estimates from OCO-2 and GOSAT were combined with satellite MOPITT CO measurements and other data
- Results: In South America, plants went dormant due to heat and drought; in Africa, high temperatures enhanced plant respiration; in Asia, drought and heat increased the intensity of fires

Significance: OCO-2 and GOSAT provide the first direct constraints of the relative roles of heat, drought, and fires on the regional CO₂ exchange during El Niño years.

Liu et al. (Science 2017)

Lessons Learned from GOSAT & OCO-2

- High accuracy and low bias are both essential
- High spatial resolution (footprint area < 4 km²)
 - Critical for quantifying emissions from compact sources
 - X_{CO2} anomaly associated with a given CO₂ injection is inversely proportional to the area of the footprint
 - Critical for gathering data in presence of patchy clouds
- Imaging rather than sampling the CO₂ and CH₄ field
 - Critical for tracking emission plumes and resolving anthropogenic emission sources from the natural background
- High resolution transport models for flux inversion
 - Critical for quantifying at the scale of cities and resolving anomalies associated with CO₂/CH₄ "weather"
- Proxies (SIF, CO, and NO₂) may be needed for attribution

Remote Sensing of CO₂ and CH₄ using Reflected Sunlight: The Pioneers

- SCIAMACHY (2002-2012) First sensor to measure O₂,
 CO₂, and CH₄ using reflected NIR/SWIR sunlight
 - Regional-scale maps of X_{CO2} and X_{CH4} over continents
- GOSAT (2009 ...) First Japanese GHG satellite
 - FTS optimized for hgh spectral resolution over broad spectral range, yielding CO₂, CH₄, and chlorophyll fluorescence (SIF)
- OCO-2 (2014 ...) First NASA satellite to measure O₂
 and CO₂ with high sensitivity, resolution, and coverage
 - High resolution imaging grating spectrometer small (< 3 km²) footprint and rapid sampling (10⁶ samples/day)
- TanSat (2016 ...) First Chinese GHG satellite
 - Imaging grating spectrometer for O₂ and CO₂ bands and cloud & aerosol Imager
 - In-orbit checkout formally complete in August 2017

Remote Sensing of CO₂ and CH₄: The Next Generation

- Feng Yun 3D (2017) Chinese GHG satellite on an operational meteorological bus
 - GAS FTS for O₂, CO₂, CH₄, CO, N₂O, H₂O
- Sentinel 5p (2017) Copernicus pre-operational Satellite
 - TROPOMI measures O₂, CH₄ (1%), CO (10%), NO₂, SIF
 - Imaging at 7 km x 7 km resolution, daily global coverage
- Gaofen 5 (2018) 2nd Chinese GHG Satellite
 - Spatial heterodyne spectrometer for O₂, CO₂, and CH₄
- OCO-3 (2018*) NASA OCO-2 spare instrument, on ISS
 - First solar CO₂ sensor to fly in a low inclination, precessing orbit
- GOSAT-2 (2018) Japanese 2nd generation satellite
 - CO as well as CO₂, CH₄, with improved precision (0.125%), and active pointing to increase number of cloud free observation

Future GHG Satellites

- CNES/UK MicroCarb (2020) compact, high sensitivity
 - Imaging grating spectrometer for O₂ A, O₂ ¹∆_g, and CO₂
 - ~1/2 of the size, mass of OCO-2, with 4.5 km x 9 km footprints
- CNES/DLR MERLIN (2021) First CH₄ LIDAR (IPDA)
 - Precise (1-2%) X_{CH4} retrievals for studies of wetland emissions, inter-hemispheric gradients and continental scale annual CH₄ budgets
- NASA GeoCarb (2022*) First GEO GHG satellite
 - Imaging spectrometer for XC_{O2}, X_{CH4}, X_{CO} and SIF
 - Stationed above 85° E for North/South America
- Sentinel 5A,5B,5C (2022) Copernicus operational services for air quality and CH₄
 - Daily global maps of X_{CO} and X_{CH4} at < 8 km x 8 km
- Sentinel 7 (2025+) Copernicus Operational CO2 Satellite

Advantages of Integrating Near-term Missions into a Virtual Constellation

A multi-satellite GHG constellation could

- Exploit the benefits of observations from low Earth orbit (LEO), geostationary orbits (GEO), and Highly Elliptical Orbits (HEO)
- Reduce revisit times in the presence of optically-thick clouds
- Improve spatial coverage without requiring very broad swaths that
 - Are technically difficult and expensive to implement
 - Large atmospheric path lengths at the swath edges are more likely to be contaminated by clouds
- Collect coincident observations of proxies (CO, NO₂, SIF) to facilitate the interpretation of the measurements
- Provide resiliency to the loss/degradation of individual satellites
- Facilitate data quality improvements through cross calibration and cross validation

Partnerships will help realize these objectives

Candidate Architectures for Purpose-Built GHG Constellations

The coverage, resolution, and precision requirements could be achieved with a constellation that incorporates

- A constellation of (3 or more) satellites in LEO with
 - Broad (~200) km swath with mean footprint sizes < 4 km²
 - Single sounding random error near 0.5 ppm and small regional scale biases (< 0.1 ppm) over > 80% of the sunlit hemisphere
 - One (or more) satellites carrying ancillary sensors (CO, NO₂, SIF and/or a CO₂ or CH₄ Lidar)
- A constellation with 3 (or more) GEO satellites
 - Monitor diurnally varying processes (e.g. rush hours, diurnal variations in the biosphere)
 - Stationed over Europe/Africa, North/South America, and East Asia
- One or more and one or more HEO satellites to monitor carbon cycle changes in the high arctic

Moving Forward from "Science" to "Operational" GHG Missions

- With the exception of the Sentinels, all of the existing and planned GHG missions are "science" missions, designed to identify optimal methods for measuring CO₂ and CH₄, not "operational" missions designed to deliver policy relevant GHG products focused on anthropogenic emissions
- Following the model developed by the operational meteorological satellite constellation, future GHG constellations will also need to focus on
 - Orbit and mission coordination
 - Data distribution, exchange, and format requirements
 - Focused efforts to improve and validate flux inversion models
- To fully exploit the information collected by future GHG constellations, the missions would also have to invest in training and capacity building and public outreach

Summary

- Space-based remote sensing observations hold substantial promise for future long-term monitoring of greenhouse gases
 - These data complement existing ground-based and aircraft based in situ data with increased coverage and sampling density
- The GOSAT and OCO-2 missions are beginning to demonstrate these capabilities
 - GOSAT and OCO-2 teams have pioneered methods for crosscalibrating measurements and cross-validating products
 - Their products have been combined to produce an 8-year record that is now being used in studies of the global carbon cycle
- Over the next decade, a succession of missions with a range of CO₂ and CH₄ measurement capabilities will be deployed
 - Much greater benefits could be achieved if these sensors can be cross-calibrated and their products can be cross-validated so that they can be combined into a long, continuous GHG data record

